Размер:
AAA
Цвет: CCC
Изображения: Вкл.Выкл.
Обычная версия сайта

Search

Search:

Search by
Query string

Results:

Vol. 26 (2023 year), No. 4, DOI: 10.21443/1560-9278-2023-26-4

Petrov A. R., Gracheva E. I., Valtchev S.
Study of technical parameters of magnetic starters and switches installed in workshop networks

The study of technical parameters of low-voltage switching devices of Russian production – magnetic starters PML and switches RE19 has been carried out. The problem of evaluating energy efficiency of operation of magnetic starters and switches installed in in-plant power supply systems has been presented. The main destabilizing factors significantly affecting the technical characteristics of switching devices with voltage up to 1 kV have been given. Reliability of functioning of the investigated devices, first of all, depends on the degree of wear of switching contacts. The dependences of the heating temperature of the contact areas of switching devices on the loading coefficient have been studied. It has been revealed that with the increase of loading of devices in the range from 1,0 to 2,0Inom the temperature of contacts and contact areas is within the permissible limits in accordance with the requirements of GOST 403-73. The main factors influencing the resistance of contact connections – current flowing through the contacts, their dimensions and heating temperature – have been shown. According to the results of theoretical and experimental studies approximating functions of dependences of resistance of contacts and contact connections of switching devices on rated current have been developed and errors of the calculated method of contact resistance estimation have been determined. The developed dependencies can be used to determine the equivalent resistance of networks of in-plant power supply when estimating the level of power losses, which will increase the reliability of the results obtained.

(in Russian, стр.11, fig. 5, tables. 4, ref 25, AdobePDF, AdobePDF 0 Kb)

Vol. 26 (2023 year), No. 4, DOI: 10.21443/1560-9278-2023-26-4

Petrova R. M., Gracheva E. I., Valtchev S., Miftakhova N. K.
Methods for assessing the reliability of in-shop power supply

Research activities in the field of development of electrical power and electrical equipment include the development of new approaches to assessing the reliability indicators of electrical equipment elements and in-house power supply systems in general. The study has examined methods for assessing the reliability of electrical equipment in intra-shop power supply systems using the example of a workshop network section, including its main elements: power transformer, low-voltage cable lines, distribution points, circuit breakers, magnetic starters, contactors, switches. The reliability parameters of the circuit are calculated relative to the distribution cabinet of the power (DCp) and the distribution point of the power (DPp); regarding each connection of DCp and DPp. The methods under consideration are recommended to be used to clarify the frequency and timing of maintenance and repairs of electrical equipment of the in-shop power supply system, as well as to analyze the reliability of operation and identify the least reliable sections of network diagrams. The presented calculation using the logical-probabilistic method by constructing a fault tree is advisable to use to estimate the frequency of power loss of DCp and DPp, as well as individual connections. For the studied circuits, graphical dependences of the probability of failure-free operation of electrical equipment and the occurrence of a failure over time have been constructed.

(in Russian, стр.15, fig. 10, tables. 4, ref 17, AdobePDF, AdobePDF 0 Kb)